import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_blobs from sklearn import metrics n_samples = 1500 x, y = make_blobs(n_samples=n_samples, centers=4, random_state=170) x = StandardScaler().fit_transform(x) KMeans = KMeans(n_clusters=4, n_init='auto', random_state=170) KMeans.fit(x) plt.figure(figsize=(12, 6)) plt.subplot(121) plt.scatter(x[:, 0], x[:, 1], c='r') plt.title("Before clustering") plt.subplot(122) plt.scatter(x[:, 0], x[:, 1], c=KMeans.labels_) plt.title("After clustering") plt.show()