import numpy as np from sklearn.naive_bayes import BernoulliNB x = np.array([[0, 1, 0, 1], [1, 1, 1, 1], [1, 1, 1, 0], [0, 1, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1], [1, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1], [0, 0, 0, 0]]) # 有风-潮湿-多云-闷热 y = np.array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0]) bnb = BernoulliNB() bnb.fit(x, y) day_pre = [[1, 0, 1, 0]] pre = bnb.predict(day_pre) print("预测结果如下:\n", "*" * 50) print("结果为: ", pre) print("*" * 50) # 进一步查看概率分析 pre_pro = bnb.predict_proba(day_pre) print("不下雨的概率为: ", pre_pro[0][0], "\n下雨的概率为: ", pre_pro[0][1])